

සෞඛන පුවර්ධන කාර්යාංශය சுகாதார மேம்பாட்டுப் பணியகம் **Health Promotion Bureau**

Ministry of Health

CREATE CHANGE

An Extended Susceptible-Exposed-Infected-Recovered (SEIR) Model with Vaccination for Forecasting COVID-19 Pandemic R. M. Nayani Umesha Rajapaksha^{1*}, M. S. D. Wijesinghe², K. A. S. P. Jayasooriya³, Tom K. Tomson⁴, B. M. I. Gunawardana⁵, W. M. P. C. Weerasinghe⁵, Shalini Bhakta⁶, Yibeltal Assefa Alemu⁷

¹Senior Registrar in Community Medicine [Post-MD Visiting Research Fellow, School of Public Health, The University of Queensland, Australia]; ²Consultant Community Physician, Health Promotion Bureau,

Ministry of Health; ³Chartered Economist, Innovation for Development Consultants; ⁴Associate Professor, Department of Public Health, Sikkim, India; ⁵Registrars in Community Medicine, Postgraduate Institute of

Medicine, University of Colombo; ⁷Senior Lecturer in Health System, School of Public Health, The University of Queensland, Australia

01. Introduction

 \circ The role of modelling in predicting the spread of an epidemic is important for health planning and policies.

This study was aimed to apply a compartmental model for predicting the variations of epidemiological parameters in Sri Lanka.

02. Methods

○ Model:

Dynamic Susceptible-Exposed-Infected-Recovered-Vaccinated (SEIRV) model and simulated for potential vaccine strategies under a range of epidemic conditions during 2021

Programme language: Python \bigcirc

 Observed how the dynamics influenced the SEIRV model without COVID-19 vaccination at different R0 values, and estimated the duration, exposed, and infected populations • The predictions based on:

• Figure 1: Evolution of infectious proportion without vaccination with different R_o values

• Table 1: Relationship between different vaccination coverages with the infected population and time of peak arrival

Percentage of vaccine	Proportion infected out of	Time of peak arrival
coverage	Susceptible (21.9 Million)	
5%	6.80%	Day 40
15%	2.70%	Day 30
30%	1.80%	Day 25
45%	1.60%	Day 22
60%	1.50%	Day 21
75%	1.45%	Day 20

- 1. Vaccination coverages (5% to 90%), vaccination-rates (1%, 2%, 5%) and
- vaccine-efficacies (40%, 60%, 80%) under different R₀ (2, 4, 6)
- Model equations

The flow of individuals through the compartments of the model is governed by a set of Ordinary Differential **Equations:**

 $\frac{dS}{dt} = -\beta I \left(\frac{S}{N}\right)^{\alpha} - \delta \varepsilon S$ $\frac{dE}{dt} = \beta I \left(\frac{S}{N}\right)^{\alpha} + \beta I \left(\frac{V}{N}\right)^{\alpha} - \sigma E$ $\frac{dI}{dt} = \sigma E - \gamma I$ dR $\frac{dR}{dt} = \gamma I + \zeta V$

04. Conclusion

Computational model for predicting the spread of COVID-19 by dynamic SEIRV model has been proposed.

 \Box If a vaccination campaign is successfully implemented, this will undoubtedly impact the selection of the R_o and consequent infection rates in that country.

The vaccination offers greater benefits to the local population by reducing the time to reach the peak, exposed and infected population through flattening the curves.

Acknowledgements : Ministry of Health Sri Lanka, Postgraduate Institute of Medicine, The University of Colombo, Sri Lanka, The School of Public Health, Faculty of Medicine, The University of Queensland, Australia and Inspector-General Emergency Management, Queensland Government, Australia