A GIS-Based Landslide Susceptibility Area Decision-Making using an Analytical Hierarchy Process: Case Study at Tamborine Mountain, Gold Coast

Bagaskara Widi Nugroho, Craig O'Neill, Chaminda Gallage

School of Earth and Atmospheric Science; School of Civil Engineering and Built Environment Queensland University of Technology, Brisbane, Australia

Introduction

Tamborine Mountain is one of populated area in Southern Queensland which recently settled around 8500 residents. It is located on the southern part of the Moreton geological complex (Willmott, 1981) on the southwest of the City of Gold Coast. As a volcanic plateau surrounded by steep slopes, scarps, and benches stretched away from the south to the north (Green, 1964), Tamborine being one of tourism destination in Gold Coast, however, the geological and topography condition support to generate landslide hazards. It was reported a number of earthslides and rockfalls wrecked public and private facilities surround the flanks, which are about 5 landslides data recorded on the Table 1. Previous research study about landslide hazards was established as below:

• Willmott (1981) who explained about landslide characteristics and zoning landslide susceptibility based on geology, hydrogeology, and terrain condition.

Tamborine Mountain Landslide Data

Date	Location	x	Y	Landform	Movement type	Causes	Sources
N/A	Tamborine Mt, at the back of St Bernard Hotel	518001.34	6908322.89	Escarpment	Rockfall	Surface erosion/ weathering	Willmott (1981)
N/A	Tamborine Mountain, 1km to the east of St Bernards Hotel	518001.35	6908322.90	Escarpment	Rockfall	Surface erosion/ weathering	Willmott (1981)
N/A	Tamborine Mountain, on the bench above Camerons Falls	518001.36	6908322.91	Escarpment	Earthslide	Surface erosion/ weathering	Willmott (1981)
27-01-	The Goat Track (Main Western Road service road, Tamborine Mountain Road), Tamborine	516923.49	6911315.37	Constructed	Debris	Prolonged high precipitation	Media

3D Physiography map of Tamborine Mountain

- Geotechnical study on slope stability was brought by Ali et al (2013);
- Kim et al (2014; and
- Gratchev (2022).

QUT and TMR Queensland has been collaborating to develop Landslide Early Warning System in Tamborine's critical slopes, nevertheless, which slopes that categorized as 'critical' or 'susceptible' to landslide is not defined yet.

Research Question??

1 2 kr

"Which areas are most susceptible to landslides and rockfalls?"

Methods

Due to limited of landslide history data, data-based *driven* decision is not applicable. Therefore, susceptibility mapping was done by a *knowledge-based driven* method. Semi-qualitative decision-making process was applied using **Analytical Hierarchy** Process (Saaty, 1980; Rozos et al., 2011, as cited in Gulbet et al, 2024). It is a heuristical process that combined qualitative judgement of expertise and quantitative. This method **controls the uncertainty** from our judgement through the **'Consistency Ratio'** rule (Soeters et al 1996; Guzetti et al 1999; as cited in Liu, X. et al 2024)

Data Aspect and Sources

Importance scale	Definition
1	Equal importance
3	Moderate importance
5	Strong importance
77	Very strong importance
9	Extreme importance
2,4,6,8	Intermediate values between two adjacent decisions
Reciprocals	Used for inverse comparison

n	I	2	3	4	5	6	7	0	9	10	11
RI	0	0	0,58	0.90	1.12	1.24	1.32	1.41	1.45	1,49	1.51

Data Analysis

Data Aspect and Sources

Data aspect	Data format	Remarks	Source
Slope aprile	Pastor	Derived from 5m DEM; divided by degree	Gaassiansa Australia 2015
Stope angle	naster	unit; EPSG:7856 - GDA2020 / MGA zone 56 -	Geoscience Australia 2015
		The most recent mapping of land use	Department of Environment
Landuse	Raster	features for South East Queensland from	and Science, Queensland
		2011, 2012 and 2013; EPSG:7856 - GDA2020	Government 2023
Lithology	Paatar	EPSG:7856 - GDA2020 / MGA zone 56 -	Department of Resources
Lithology	naster	Projected	Queensland 2023
	Raster	EPSG:7856 - GDA2020 / MGA zone 56 -	Department of Resources
Lineament Froximity		Projected; proximity processing derived from	Queensland 2023
Stroom provinsity	Paatar	EPSG:7856 - GDA2020 / MGA zone 56 -	Queensland Spatial
Scream proximity	Raster	Projected; proximity processing derived from	Catalogue
Road Bravingity	Pastor	EPSG:7856 - GDA2020 / MGA zone 56 -	Department of Resources
Road Froximity	Raster	Projected; proximity processing derived from	Queensland 2023
Londolido location	Deintchenefile	Some points was adjusted referring to	Geosciences Australia (2012);
Landslide location	Point snapefile	Willmott (1981) - EPSG:7856 - GDA2020 /	Kim, D.H et al (2015)

Result and Discussion

Pair-wise comparison matrix for causative factors

Pair-wise comparison matrix for earthslide susceptibility zonation

Criteria	Sl	Lt	LP	LU	RP	SP	Weight	CR
รเ	1,00						0,30	
Lt	0,50	1,00					0,24	
LP	0,50	0,50	1,00				0,19	0 704
LU	0,50	0,50	0,50	1,00			0,14	0,7%
RP	0,33	0,67	0,33	0,50	1,00		0,10	
SP	0,20	0,40	0,25	0,25	0,33	1,00	0,05	
Pair-wise co	mparison ma	atrix for rocl	cfall suscep	tibility zona	tion			
Criteria	Lt	Sl	LP	LU	RP	SP	Weight	CR
Lt	1,00						0,32	
รเ	0,50	1,00					0,26	
LP	0,50	0,50	1,00				0,17	0 204
LU	0,33	0,33	0,50	1,00			0,12	9,3%
RP	0,25	0,50	0,33	0,50	1,00		0,08	
SP	0,20	0,40	0,25	0,25	0,33	1,00	0,05	
Sl = Slope An	gle; Lt = Litho	logy; LP = Lir	neament Pro	ximity; LU = L	andUse; RP	= Roads Pro	oximity; SP =	Stream
Proximity								
Pair-wise co	mparison ma	atrix for slop	e angle fact	or (Earthslid	de) in degree	•		
Criteria	>45	35-45	25-35	15-25	<15		Weight	CR
>45	1,00						0,37	

>45	1,00						0,37	
35-45	0,50	1,00					0,26	
25-35	0,50	0,50	1,00				0,19	2,9%
15-25	0,33	0,33	0,50	1,00			0,11	
<15	0,25	0,33	0,33	0,50	1,00		0,07	
Pair-wise co	mparison m	atrix for slop	pe angle fact	or (Rockfall)) in degree			
Criteria	>45	35-45	25-35	15-25	<15		Weight	CR
>45	1,00						0,42	
35-45	0,50	1,00					0,28	
25-35	0,33	0,50	1,00				0,19	8,0%
15-25	0,17	0,20	0,25	1,00			0,08	
<15	0,14	0,14	0,17	0,25	1,00		0,04	
Pair-wise co	mparison m	atrix for lithe	ology factor	(Earthslide)	in degree			
Criteria	Cl	Al	BR	CS	Ar	MR	Weight	CR
Cl	1,00						0,34	
Al	0,50	1,00					0,26	
BR	0,50	0,50	1,00				0,19	E 004
CS	0,33	0,33	0,33	1,00			0,10	5,0%

Rockfall Susceptibility Zone

Class	Areas (Km2)	Rockfall
Low	103,69	0%
Moderate	168,26	0%

Earthslide	Susce	ptibility	/Zone

Class	Areas (Km2)	Earthslide
Low	107,46	0%
Moderate	147,87	0%

		-)	-)	- ,			- ,	
MR	0,17	0,20	0,25	0,33	0,33	1,00	0,04	
Pair-wise co	omparison ma	atrix for lit	hology factor	(Rockfall) in	degree			
Criteria	Cl	Al	BR	CS	Ar	MR	Weight	CR
Cl	1,00						0,32	
Al	0,50	1,00					0,25	
BR	0,50	0,50	1,00				0,17	C 104
CS	0,33	0,33	0,50	1,00			0,12	6,1%
Ar	0,33	0,33	0,50	0,50	1,00		0,10	
MR	0,14	0,14	0,17	0,20	0,20	1,00	0,03	
<u> </u>			1.1 D 1 00					

Cl=Colluvium; Al= Alluvium; BR= Basaltic Rock; CS=Clayey Sedimentary rock; Ar= Arenite; MR;= Metasediment Rock

Pair-wise comparison matrix for land use factor

Criteria	IU	Wt	PI	PD	PN	CN	Weight	CR
IU	1,00						0,39	
Wt	0,50	1,00					0,24	
PI	0,33	0,50	1,00				0,16	6.20/
PD	0,33	0,33	0,33	1,00			0,09	6,3%
PN	0,25	0,33	0,25	0,50	1,00		0,07	
CN	0,25	0,25	0,25	0,33	0,33	1,00	0,05	

IU= Intensive Uses; Wt= Water; PI= Production from Irrigated Agriculture and Plantations; PD= Production from Dryland Agriculture and plantations; PN= Production from relatively Natural environments; CN=

Pair-wise co	mparison m	atrix for road	ds proximity	factor			
Criteria	0-20m	20-30m	30-40m	40-50m	>50m	Weight	CR
0-20m	1,00					0,36	
20-30m	1,00	1,00				0,29	
30-40m	0,33	0,50	1,00			0,18	3,2%
40-50m	0,33	0,50	0,50	1,00		0,13	
>50m	0,14	0,17	0,20	0,25	1,00	0,04	
Pair-wise co	mparison m	atrix for stre	am proximit	y factor			
Criteria	0-100m	100-200m	200-300m	300-400m	>400m	Weight	CR
0-100m	1,00					0,37	
100-200m	1,00	1,00				0,32	
200-300m	0,33	0,50	1,00			0,18	4,5%
300-400m	0,20	0,25	0,33	1,00		0,09	
>400m	0,17	0,20	0,25	0,33	1,00	0,05	
Pair-wise co	mparison m	atrix for line	ament proxi	mity factor			
Criteria	0-200 m	200-400 m	400-600 m	600-800 m	>800 m	Weight	CR
0-200 m	1,00					0,35	
200-400 m	0,50	1,00				0,27	
400-600 m	0,50	0,50	1,00			0,19	3,9%
600-800 m	0,33	0,33	0,50	1,00		0,11	
>800 m	0.33	0.33	0.33	0.50	1.00	0.08	

Stream proximity

>400 m

300-400 m

200-30.1 m

100-200 m

0-10C m

Stream proximity Ma

Coordinate system

Geosciences Australia 2024

Scale 1 : 70.000

High	4,50	100%	High Very High	21,09 0,04	100% 0%	